Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1366098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644975

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been widely linked to Parkinson's disease, where the G2019S variant has been shown to contribute uniquely to both familial and sporadic forms of the disease. LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and network events related to these mutations remain poorly understood. The advancement and availability of tools for neural engineering now enable modeling of selected pathological aspects of neurodegenerative disease in human neural networks in vitro. Our study revealed distinct pathology associated dynamics in engineered human cortical neural networks carrying the LRRK2 G2019S mutation compared to healthy isogenic control neural networks. The neurons carrying the LRRK2 G2019S mutation self-organized into networks with aberrant morphology and mitochondrial dynamics, affecting emerging structure-function relationships both at the micro-and mesoscale. Taken together, the findings of our study points toward an overall heightened metabolic demand in networks carrying the LRRK2 G2019S mutation, as well as a resilience to change in response to perturbation, compared to healthy isogenic controls.

2.
Front Integr Neurosci ; 16: 855071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669734

RESUMEN

Current preclinical models of neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can significantly benefit from in vitro neuroengineering approaches that enable the selective study and manipulation of neurons, networks, and functional units of interest. Custom-designed compartmentalized microfluidic culture systems enable the co-culture of different relevant cell types in interconnected but fluidically isolated microenvironments. Such systems can thus be applied for ALS disease modeling, as they enable the recapitulation and study of neuromuscular junctions (NMJ) through co-culturing of motor neurons and muscle cells in separate, but interconnected compartments. These in vitro systems are particularly relevant for investigations of mechanistic aspects of the ALS pathological cascade in engineered NMJ, as progressive loss of NMJ functionality may constitute one of the hallmarks of disease related pathology at early onset, in line with the dying back hypothesis. In such models, ability to test whether motor neuron degeneration in ALS starts at the nerve terminal or at the NMJ and retrogradely progresses to the motor neuron cell body largely relies on robust methods for verification of engineered NMJ functionality. In this study, we demonstrate the functionality of engineered NMJs within a microfluidic chip with a differentially perturbable microenvironment using a designer pseudotyped ΔG-rabies virus for retrograde monosynaptic tracing.

3.
Eye (Lond) ; 35(12): 3202-3221, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34127842

RESUMEN

Glaucoma is a progressive optic neuropathy that is the second leading cause of preventable blindness worldwide, after cataract formation. A rise in the intraocular pressure (IOP) is considered to be a major risk factor for glaucoma and is associated with an abnormal increase of resistance to aqueous humour outflow from the anterior chamber. Glaucoma drainage devices have been developed to provide an alternative pathway through which aqueous humour can effectively exit the anterior chamber, thereby reducing IOP. These devices include the traditional aqueous shunts with tube-plate design, as well as more recent implants, such as the trabeculectomy-modifying EX-PRESS® implant and the new minimally invasive glaucoma surgery (MIGS) devices. In this review, we will describe each implant in detail, focusing on their efficacy in reducing IOP and safety profile. Additionally, a critical and evidence-based comparison between these implants will be provided. Finally, we will propose potential developments that may help to improve the performance of current devices.


Asunto(s)
Implantes de Drenaje de Glaucoma , Glaucoma , Trabeculectomía , Humor Acuoso , Glaucoma/cirugía , Humanos , Presión Intraocular
4.
Biosens Bioelectron ; 140: 111329, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163396

RESUMEN

Lab-on-chip platforms, such as microfluidic chips and micro-electrode arrays (MEAs) are powerful tools that allow us to manipulate and study neurons in vitro. Microfluidic chips provide a controlled extracellular environment that structures neural networks and facilitates isolation and manipulation at a sub-cellular level. Furthermore, MEAs enable measurement of extracellular electrophysiological activity from single neurons to entire networks. Here, we demonstrate the design, fabrication and application of a 3-nodal microfluidic chip integrated with MEAs as a versatile study platform for neurobiology and pathophysiology. In this work, we evaluate the use of the microfluidic chip to structure a neural network into three separate nodes, interconnected through tunnels that isolate and guide axons into a channel, thus facilitating synaptic contacts between neurons originating from opposite nodes. Furthermore, we demonstrate the utility of the MEA for monitoring developing activity and intra-/inter nodal connectivity of the structured neural network. Finally, we demonstrate the versatility of the platform in two separate experiments. First, we demonstrate the ability to measure intra- and inter-nodal dynamic responses to a fluidically isolated chemical stimulation. Then, we demonstrate the feature of the microfluidic chip enabling the disruption of functional connectivity between nodes and examination of the immediate activity response of the neural network. The platform enables in vitro modelling of neural networks to study their functional connectomes in the context of neurodegenerative disease and CNS trauma, including spinal cord injury.


Asunto(s)
Técnicas Biosensibles/instrumentación , Dispositivos Laboratorio en un Chip , Red Nerviosa/citología , Red Nerviosa/efectos de los fármacos , Neurotransmisores/farmacología , Animales , Axotomía , Línea Celular , Diseño de Equipo , Red Nerviosa/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
5.
Biomed Microdevices ; 20(1): 9, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29294210

RESUMEN

Neural network formation is a complex process involving axon outgrowth and guidance. Axon guidance is facilitated by structural and molecular cues from the surrounding microenvironment. Micro-fabrication techniques can be employed to produce microfluidic chips with a highly controlled microenvironment for neural cells enabling longitudinal studies of complex processes associated with network formation. In this work, we demonstrate a novel open microfluidic chip design that encompasses a freely variable number of nodes interconnected by axon-permissible tunnels, enabling structuring of multi-nodal neural networks in vitro. The chip employs a partially open design to allow high level of control and reproducibility of cell seeding, while reducing shear stress on the cells. We show that by culturing dorsal root ganglion cells (DRGs) in our microfluidic chip, we were able to structure a neural network in vitro. These neurons were compartmentalized within six nodes interconnected through axon growth tunnels. Furthermore, we demonstrate the additional benefit of open top design by establishing a 3D neural culture in matrigel and a neuronal aggregate 3D culture within the chips. In conclusion, our results demonstrate a novel microfluidic chip design applicable to structuring complex neural networks in vitro, thus providing a versatile, highly relevant platform for the study of neural network dynamics applicable to developmental and regenerative neuroscience.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Dispositivos Laboratorio en un Chip , Red Nerviosa/citología , Animales , Colágeno , Combinación de Medicamentos , Diseño de Equipo , Ganglios Espinales/citología , Laminina , Neuronas/citología , Proteoglicanos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...